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ABSTRACT 

A model of electrophoretic migration that is influenced by generated Joule heat is presented. The model takes into account the 
axial flux of the heat. It is shown that the mutual influence of non-equilibrium fluxes of mass and heat may lead to new 
phenomena: oscillation of the concentration profile on concentration boundaries and changes in concentration of the electrolytes 
(either an increase or a decrease) appearing at sites of jumps of the radial heat flux of the capillary tube. The theoretical results 
are supported by experiments. 

INTRODUCTION 

The production of heat is an inherent phenom- 
enon accompanying all electromigration separa- 
tion methods. The heat is generated by ohmic 
resistance of the electrolyte due to flow of the 
electric current and, in consequence, the tem- 
perature of the separation media is increased. 
The heat is generated in the whole volume of the 
separation media but it is transported outside by 
the walls of the column. It causes a non-homoge- 
neous radial distribution of the temperature in 
the separation column. Electrophoretic mobility, 
which plays a significant role in electromigration 
methods, is strongly influenced by the tempera- 
ture. Therefore, the temperature gradient causes 
radial variations in the migration velocity profile 
and, in consequence, a decrease in separation 
efficiency [l-9]. 

The loss of heat by the walls of the separation 
column is dependent on the overall heat transfer 
through the capillary walls. This heat transfer 
may vary in various parts of the column owing to 
different thermal conductivities and the heat 
transfer coefficient of the walls. Additionally, 
different electric conductivities of various sites of 
the solution in the capillary column (e.g., in 
distinctive isotachophoretic zones or in any dis- 

turbances in the axial concentration profile) also 
cause different Joule heat powers and different 
temperatures of the sites. Both will cause an 
axial flux of the heat. 

It should be emphasized that the axial vari- 
ation of the heat transfer through the column 
walls can be distinguished, especially in junctions 
of non-thermostated column tubing. In con- 
sequence, the axial variation of temperature can 
reach several tens of degrees and can exceed the 
radial variation. In all studies [l-9] dealing with 
the effects of temperature gradients on the 
efficiency of electrophoretic separations, the 
axial flux of heat was omitted. This neglect may 
be acceptable in cases of thermal band broaden- 
ing of peaks moving relatively quickly by electro- 
phoretic or electroosmotic velocity in a homo- 
genous and concentrated background buffer, but 
may fail in cases of concentration boundaries. 
Such a concentration boundary moves in a capil- 
lary relatively slowly owing to the concentration 
dependence of the transference numbers of ions 
on both sides of the boundary [lO,ll]. 

Generally, the transference numbers are also 
dependent on temperature. It will be shown in 
this paper that the temperature dependence of 
transference numbers gives rise to an interesting 
phenomenon, i.e., moving oscillation of the 
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concentration profile of the concentration 
boundary. Additionally, owing to the tempera- 
ture dependence of the transference numbers, 
the axial jumps in the heat transfer coefficient of 
the capillary walls and consequent axial jumps in 
the temperature of the buffer will cause an 
increase or decrease in concentration at sites of 
the jumps. 

The aim of this work was to obtain a theoret- 
.ical description, computer solution and ex- 
perimental support of a model of electromigra- 
tion separation processes taking into account the 
mutual influence of the mass and heat fluxes. 
This paper is organized as follows: formulation 
of a general mathematical model of temperature- 
influenced electromigration; formulation of a 
simplified mathematical model of temperature 
influenced electromigration assuming a homoge- 
neous radial distribution of temperature; numeri- 
cal solution of both models; formulation of a 
linearized modification of the simplified model 
and both its analytical and numerical solution; 
and experimental verification. 

MATHEMATICAL MODELS 

General model of temperature-influenced 
electromigration 

Let us consider a capillary tube as a separation 
column with length L and inner radius R filled 
by a solution of n strong ions. Let the axial x 
coordinate be the axis of the capillary and let an 
outer electric field act in the direction of x 
coordinate. Further, we do not consider bulk 
convection or electrosmotic flow in the column. 

The system is cylindrically symmetrical, there- 
fore it is possible to cope with only two spatial 
coordinates, namely x and r, where r is the radial 
coordinate of the capillary tube. The concen- 
tration ci = cj(x, r, t) of the ith ion and the 
temperature T = T(x, r, t) in the column will be 
functions of the three variables, i.e., the spatial x 
and r coordinates, x E (0, L), r E (0, R), and 
the time t, t 20. 

Each ion inside the column is affected by two 
forces: the chemical potential gradient of the ion 
and the electric potential gradient. In a very 
dilute solution, eventual cross-effects between 

fluxes of different ions can be neglected [12] and 
a gradient of concentration can be used instead 
of the chemical potential gradient. The matter 
flux J,(x, r, t) of the ith ion in the capillary tube 
is a vector composed of two components, J&K, 
r, t) and J&X, r, t). Assuming proportionality 
between fluxes and forces, the matter fluxes are 

P21 

Ji = -Di grad ci - sgn(z,)uicj grad 4 , 

i=l,...,n (1) 

where zi, Di and ui are the relative charge 
number, diffusion coefficient and ionic mobility 
of the ith ion, respectively, 4 is the electric 
potential and grad is the gradient of a scalar 
function in cylindrical coordinates. 

Fluxes of charged particles are related to the 
flow of the electric current. It must be realized 
that the current density j is also a vector, which 
is dependent on x, r and t coordinates: 

j=F 2 zJk 
k=l 

(2) 

where F is the Faraday constant. Eliminating the 
potential gradient from eqn. 1 using eqn. 2, we 
have 

Ji = -Di grad ci 

+ 
sgn(z,)c,z+ 

K 
j+F$$ ZkDkgEidCk 

> (3) 
k=l 

where K is the specific conductivity: 

K = F i lzklCkuk 
k=l 

(4) 

The continuity equation, Eqldt = -div J,. (where 
div is the divergence of a vector) expresses the 
mass balance at each point in the capillary tube. 
In our system it can be written as 

sgn(z,)c,u, - 
K 

j + F 2 ZkDk grad ck >I (5) 
k=l 

The vector heat flux, JT(x, r, t), in the capil- 
lary tube is composed of two components, Jr,X(x, 
r, t) and Jr,,(x, r, t), and, neglecting the Soret 
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effect [13], can be described by a phenomeno- 
logical Fourier law [14,15]: 

JT= -KgradT (6) 

where K is the thermal conductivity. The rele- 
vance of the neglect of the Soret effect is 
discussed in the Appendix. 

The Joule heat power, w,+, generated by the 
electric current density, j, m solution per unit 
volume is wg = ]j]‘/~. This term appears as the 
source term in the following equation which can 
be written for temperature: 

Id2 
pmch s = div(K grad T) + K (7) 

where pm is the mass density and c,, is the heat 
capacity of the solution. 

It should be further considered that many 
physico-chemical properties depend on tempera- 
ture and/or concentration. For the correct de- 
scription of a real situation, these dependences 
should be taken into account. 

Mobilities, ui, depend strongly on concentra- 
tions and temperature, i.e., ui = ui(cl, . . . , c,, 
T). The limiting ionic mobility, up, which is the 
mobility of an ion at infinite dilution, varies 
owing to changes in the interaction between 
solvent molecules and the ions, and between the 
solvent molecules themselves. The main part of 
this variation is caused by the change in viscosity 
of the solvent. This can be expressed as the 
Walden rule [16], which states that the product 
of the limiting mobility and the viscosity of the 
solvent is approximately constant. For practical 
reasons, the temperature dependence of the 
limiting mobility can be expressed as a polyno- 
mial function of the temperature. Constants of 
the polynomial can easily be obtained by fitting 
from available experimental data. 

The Debye-Hiickel-Onsager theory [17] de- 
scribes the temperature dependence of the elec- 
trophoretic and relaxation effects influencing the 
mobility in a finite concentration. The Onsager 
limiting law can be written in the form 

ui = up - (Au; + B)fi (8) 

where Is is the ionic strength and A and B are 
terms corresponding to the relaxation and elec- 

trophoretic effects, respectively. They are in- 
dependent of concentration, but dependent on 
temperature, permittivity and viscosity of the 
solvent. The temperature dependence of the 
terms A and B may also be expressed, in a not 
very broad temperature interval, as a polynomial 
function. 

The concentration dependence of the diffusion 
coefficients can be neglected with good preci- 
sion. For example, the diffusion coefficient of 
NaCl in aqueous solution at 25°C increases by 
about 0.5% on changing the concentration from 
infinite dilution to 10 mol me3 [16]. However, 
the diffusion coefficients of ions depend strongly 
on temperature, i.e., Di = Di(T). There is no 
theory describing the temperature dependence of 
diffusion coefficients in liquids precisely. Never- 
theless, for our purposes the simplest hydro- 
dynamic theory can be used. For diffusion of the 
large, spherically symmetrical ith ion with diam- 
eter ri in a solvent with small molecules, the 
Stokes-Einstein equation [18] holds for the 
diffusion coefficient Di : 

(9) 

where k is the Boltzmann constant, T is the 
temperature expressed in “C and 7 is the viscosi- 
ty coefficient of the solvent. As the temperature 
dependence of the viscosity of liquids is approxi- 
mately exponential [X3], it can be written in 
accordance with the Arrhenius relationship for 
the viscosity coefficient: 

7 = A vise exP 
Evisc 

k(T + 273) I (10) 

where Avis, and Evisc are constants of the solvent 
independent of temperature. Hence, taking into 
account eqns. 9 and 10, the temperature depen- 
dence of the diffusion coefficient of the ith ion is 

Dj = Ki,visc(T + 273) exp 
Evisc 

k(T + 273) 1 (11) 
where Ki,,i,, is a constant of the ith ion. Again, 
the parameters Avis,, Evisc and Ki,,isc can be 
obtained by fitting from available experimental 
data. 

For a complete description of electromigration 
including the temperature effects, the equations 
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describing the temperature and/or concentration 
dependences of mobilities, diffusion coefficients 
and thermal conductivities must be added to 
eqns. 5 and 7. These equations, together with 
appropriate initial and boundary conditions, 
form the general model of temperature-influ- 
enced electromigration. The initial condition is 
an initial distribution of concentration and tem- 
perature in a column. It is natural to assume a 
homogeneous initial radial distribution of con- 
centration of all ions in the tube and a constant 
initial temperature equal to the temperature of 
the surroundings T, at time t = 0 in the whole 
column, i.e., 

q(x, r, 0) = C,(x) , T(x, r, 0) = T, , 

xW,Q 9 40,R) (12) 

where C,(x) is the initial axial concentration 
distribution of the ith ion. 

The boundary condition at the centre line r = 0 
reflects a cylindrical symmetry of the problem; 
therefore, 

i3Ci 
; (x, 0, t) = 0 and $ (X, 0, t) = 0 , 

xE(O,L), t>O (13) 

At the capillary wall, where r = R, heat is 
transported outside the column. The overall 
radial heat flux will be proportional to the 
difference between the temperature of the inner 
wall and the temperature of the surroundings, 
hence the boundary condition is 

-&$ (x, R, t) = h,[T(x, R, t) - T,] , 

xE(O,L), t>O (14) 

where h, is the overall heat transfer coefficient. 
If the column is formed of a simple capillary tube 
with an inner radius R and an outer radius R,, 
the overall heat transfer coefficient is [19] 

1 1 
ho = x ’ [ln (RIR,)IK,] + l/R,h, (1% 

where K, is the thermal conductivity of the 
capillary wall and h, is the surface heat transfer 
coefficient. The surface heat transfer coefficient 
h, is a function of the cooling properties of the 

surroundings and the surface temperature of the 
outer capillary wall. Gobie and Ivory [8] calcu- 
lated its value for various cooling conditions and 
found h, = 130 or h, 53200 W m-’ K-’ for an 
air-cooled or liquid-cooled capillary, respective- 
ly. Generally, it will be assumed that h, = h,(x) 
and ho = h,(x). 

The boundary conditions for concentrations at 
the boundary r = R are 

2 (x, R, t) = 0, xE(O,L), t>O (16) 

which means that matter cannot be transported 
through the walls. 

Boundary conditions at the boundaries x = 0 
and x = L should reflect the fact that here we are 
interested in phenomena taking place inside a 
capillary tube. Real boundaries originating at 
connections of the capillary column to electrode 
vessels would bring another complexity to 
modelling. Therefore, it will be convenient to 
adopt boundary conditions: 

aci 
z (0, r, t) = 0 g (0, r, t) = 0 

aci 
-&L,r,t)=O $(L,r,t)=O 

rE(O,R), t>O (17) 

Analogous equations for transport of mass to 
the set of eqns. 5 can be written for elec- 
tromigration of weak electrolytes. In this case, 
for the relevant description of temperature-in- 
fluenced electromigration, the temperature de- 
pendence of the dissociation constants should 
also be known. 

Simplified model of temperature influenced 
electromigration 

The solution of the general eqns. 5 and 7, 
assuming the initial and boundary conditions 12- 
14, 16 and 17, is very complex, hence it would be 
beneficial to find a simplification of the model. 

Owing to diverse thermal conductivity and the 
overall heat transfer coefficient of the various 
parts of the column walls, it can be expected that 
an axial temperature profile may vary con- 
siderably in different parts of the column. Espe- 
cially in junctions of column tubing or in junc- 
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tions of liquid-cooled and air-cooled parts of a 
capillary tube the overall heat flux outside the 
column exhibits large jumps. The axial jumps in 
temperature may easily reach several tens of 
degrees. Other reasons for a non-constant axial 
temperature distribution are different conduc- 
tivities or concentrations of solutions in various 
parts of the capillary. 

On the other hand, the radial temperature 
gradient often hardly reaches a few degrees 
under working conditions typical in CZE or ITP. 

From this point of view, if only axial effects 
are to be studied, it will be not too far from 
reality to assume uniform radial distributions of 
concentration and temperature, i.e., ci = ci(x, t) 
and T = T(x, t). Hence eqns. 5 will have the 
form 

aCi a 
[ 

aci 
dt=x Di*z 

Sgll(Zi)CiUi 
- 

K 
( j + F & z$, - $)] (18) 

The current density i is now not a function of r 
and consequently not a function of X, hence 
i =i(t). If the 1 t e ec ric current is controlled by an 
electronic regulator to a constant value I, then 
i = I/(&). 

In the simplest case of a u&univalent elec- 
trolyte, i = 1,2 and the electroneutrality condi- 
tion relates c1 = c2. Denoting c = c1 = cl, z, = 1 
and z2 = -1, the set of eqns. 18 is reduced to 
one equation: 

D+“L 
u1+ u2 [’ 

$+(D,-D,)E 11 
(1% 

which can be rewritten as 

(20) 

denoting D =(D1u2+D2u1)I(u1 +u2). 
Eqn. 14 can no longer be a boundary condi- 

tion but an additional term describing a heat 
loss. Therefore, the analogy of eqn. 7 will now 
be (using the simple relationship between the 
surface and volume of a cylinder) 
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(21) 
The initial and boundary conditions can be 

analogous to eqns. 12 and 17: 

ci(x,O)=ci(x), T(x,O)= T, , xE (OJ) (22) 

aci 
,,(O,t)=O, $O,t)=O, t>O (23) 

In fact, the isolated set of eqns. 18 gives a 
complete description of the migration of strong 
ions in an electric field at constant temperature. 
This set of equations was solved numerically by 
Dose and Guiochon [20] for several strong 
electrolytes. 

It is evident that an analytical solution of eqns. 
5 and 7 or even eqns. 20 and 21 can hardly be 
found, and therefore a numerical solution must 
be coped with. 

EXPERIMENTAL 

The numerical solution of the partial differen- 
tial equations was performed by the method of 
lines. It consisted in discretizing spatial deriva- 
tives at a set of grid points to generate a set of 
ordinary differential equations with time as the 
independent variable. The finite-difference ap- 
proximation is based on the first-order symmetri- 
cal difference approximation for both first and 
second derivatives. The Hamming’s modification 
of the fourth-order predictor-corrector method 
[21] was used for the solution of the resulting set 
of ordinary differential equations. 

The algorithm solving dynamics of elec- 
tromigration was programmed in Pascal and can 
run on IBM PC computers. Simulation results 
can be displayed in graphical form. 

The electromigration experiments were done 
on a one-column isotachophoretic analyser con- 
sisting of the hydraulic part from an Agrofor 
system (JZD, Odra Krmelfn, Czech Republic) 
and a high-frequency contactless detector [22]. 
The capillaries were made of PTFE. Sodium 
chloride (Lachema, Bra, Czech Republic) was 
of analytical-reagent grade and bromophenol 
blue (Lachema) was of put-urn grade. No addi- 
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tives were added to solutions to decrease the 
electroosmotic flow. 

RESULTS AND DISCUSSION 

Further considerations will be limited to the 
temperature-influenced electromigration of bina- 
ry u&univalent electrolytes. 

Stockmayer [ll] derived that the concentra- 
tion boundary of a binary electrolyte moves in an 
electric field in a capillary due to concentration 
dependence of the transference numbers. He 
showed that if this dependence is linear, the 
moving concentration boundary is simply shifted 
by a constant velocity and spread by diffusion. If 
the dependence is non-linear, additional distor- 
tion of the boundary shape takes place. 

It will be further shown that if the temperature 
influence is considered, the moving concentra- 
tion boundary can have a different character. 
From comparison with experiments, an available 
and well defined electrolyte system should be 
chosen. NaCl was considered as such an elec- 
trolyte because Na+ and Cl- ions have different 
mobilities and different temperature dependen- 
ces of the mobility. Additionally, detailed data 
on the mobility and diffusion of these ions are 
readily available. In the following text, the 
subscripts 1 and 2 represent Na+ and Cl-, 
respectively. Assuming a polynomial tempera- 
ture dependence of limiting mobilities and using 
published experimental data [16,23], the follow- 
ing concentration and temperature dependences 
of the mob&ties in aqueous soiution were ob- 
tained by fitting: 

A = 0.2209 + 3.325 - 10-4T + 1.640 - lO+T’ (24) 

B = 31.45 + 0.6304T + 0.01428T2 (25) 

L, = 25.58 + 0.9OOOT + 3.852 * 10-3T2 (26) 

L, =40.49+ 1.357T+ 3.688. 10-3T2 (27) 

u1 = [L, -(AL, + B)&ii&%]/lOOOOF (28) 

u2= [L,-(AL,+B)~]MJOOOF (29) 

where c is the concentration in mol m3, T is the 
temperature in “C and u1 and u2 are the 
mobilities in m2 V-’ s-l. 
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Analogously, for the temperature dependence 
of the diffusion coefficients we obtained 

D, = 4.195 - 10m9(T + 273) exp - T2+y73 
( > (30) 

D, = 6.396 - 10e9(T + 273) exp 
> (31) 

where D, and D, are the diffusion coefficients in 
m2 s-l. 

For very dilute solutions, the heat is trans- 
ported in a capillary column mainly by the 
solvent, and therefore values valid for water 
were taken as constants, name17 P,,, = 1000 kg 
mm3 and c,, = 4187 J K-’ kg- . The thermal 
conductivity of water varies slightly with tem- 
perature from 0.56 W K-l m-* at 0°C to 0.68 W 
K-’ m-l at 100°C. In this work, an average 
value of K = 0.6 W K-’ m-’ was considered. 
The thermal conductivity of the PTFE wall of 
the capillary tube was assumed to be K, = 0.27 
W K- m-‘. 
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49 
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45.5 

45.3 
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Fig. 1. Radial temperature profile in the capillary tube. 
Current density, -1373 A m-‘; temperature of surroundings, 
25°C; PTFE capiuary of I.D. 0.3 mm, O.D. 0.5 mm; thermaI 
conductivity of the PTFE waII, 0.27 W K-’ m-l; surface heat 
transfer coefficient, 130 W m-* K-‘. T= temperature; r = 
radial coordinate of the capiky tube; t = time. (a) 1 mM 
NaCI; (b) 2 mM NaCI. 
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Computer solution of the general model 
A general numerical solution of the set of 

eqns. 5 and 7 will be published elsewhere. For 
the purpose of this paper, the calculation will be 
limited to a u&univalent electrolyte and cases 
of constant initial axial and radial distribution of 
concentration in the capillary, Le., 

c(x,r,O)=C, T(x,r,O)=T,, xE(O,L), 

rE (0, R) (32) 

where C is the initial concentration of the 
electrolyte. 

Fig. 1 shows the radial temperature prolile at 
various times attained by solution of eqns. 5 and 
7 for two different concentrations of sodium 
chloride, namely 1 and 2 mol rne3, and assuming 
the initial conditions in eqn. 32. At time t = 5.1 
s, the radial temperature profile is almost in a 
steady state. It is seen that the temperature 
difference between the centre and the wall of the 
capillary is less than l”C, whereas that between 
the two solutions is about 13°C. 

Computer solution of the simpl$ed model 
The simplified model in eqns. 20 and 21 has 

the advantage of a fairly rapid numerical solution 
and less computer memory requirement, but 
nevertheless still seems to be able to describe 
main “axial features” of the general model. 

The solution reveals the existence of two 
interesting effects: oscillation of the concentra- 
tion profile on concentration boundaries and 
changes in concentration of the electrolytes 
(either an increase or a decrease) appearing at 
sites of jumps of the overall heat transfer coeffi- 
cient h,. 

Oscillation of the concentration profile. The 
numerical solution of eqns. 20 and 21, with 
initial and boundary conditions in eqns. 22 and 
23 and assuming a constant heat transfer coeffi- 
cient along the capillary tube, is demonstrated in 
Fig. 2. In this and analogous figures, the initial 
distribution of concentration shown in (a) is the 
initial condition. The triad (a), (b) and (c) shows 
the time development of a moving concentration 
boundary between c’ = 2 mol me3 and c” = 4 mol 
m -3 NaCl in an air-cooled P’TFE capillary of 
I.D. 0.3 mm and O.D. 0.5 mm. The linear 

5 
b 

A.4 t= ZOOS 

c t= 800s 

DET 

t/s 

60 

4 
t= 600s 

50 

40 

Ff!I 
3% 10 20 30 4 9 50 

x mm 

Fig. 2. Simulation of electromigration of the boundary 
between 2 and 4 mM NaCl. Current density, -1500 A m-*; 
temperature of surroundings, 25°C; FTFE capillary of I.D. 
0.3 mm, O.D. 0.5 mm; thermal conductivity of the PTFE 
wall, 0.27 W K-’ m-r; surface heat transfer coefficient, 130 
W m-* K-l. c = Concentration; r,, = specific resistance; T= 
temperature; x = axial coordinate of the capillary tube; t = 
time; DET = position of the detector. (a), (b), (c) Distribu- 
tions of concentration in the capillary tube; (d) time record 
of the specific resistance measured by the detector at a 
position 30 mm along the capillary tube; (e) distribution of 
temperature in the capillary tube. 

velocity, u, of the boundary according to Stock- 
mayer [ll] is 

j(N’ - N”) 
u = Q’ - p) (33) 

where N’ and N” are the transference numbers 
of sodium in the two solutions with concen- 
trations c’ and c” and the transference number N 
is expressed as N = urI(ur + ul). In Fig. 2, the 
transference numbers resulting from eqns. 28 
and 29 are N’ = 0.40042 and N” = 0.39544 and, 
hence, the velocity of the concentration bound- 
ary calculated by eqn. 33 is u = 38.7 - 10m6 m/s. 
This value corresponds well with the velocity of 
the boundary deduced from Fig. 2. With the 
direction of the electric current used, i = -1500 
A m*, the temperature gradient facilitates main- 
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taining the boundary width in a steady state, i.e., 
it has a sharpening effect. Additionally, moving 
dumped oscillations of the profile appear on the 
trailing edge of the boundary. Fig. 2 also shows 
the axial temperature profile (e) corresponding 
to a given time and the time record (d) of the 
signal of a conductivity detector placed at a 
position 30 mm along the capillary tube. 

If the current is in the opposite direction 
towards the concentration boundary (Fig. 3), 
only small oscillations are observed and the 
moving boundary is spread more rapidly than in 
the case of free diffusion. 

Both sharpening and spreading effects have 
been described previously [lO,ll] for electro- 
migration not influenced by Joule heat evalua- 
tion. Nevertheless, they can be much more 
pronounced if the heat evaluation plays a signifi- 
cant role. 

Eqns. 20 and 21 are non-linear, hence their 
solution depends non-linearly on the initial and 
boundary conditions. On changing the concen- 
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Fig. 3. Simulation of electromigration of the boundary 
between 4 and 2 m&f NaCl. Current density, -1500 A m-*; 
temperature of surroundings, 25°C; PTFE capillary of I.D. 
0.3 mm, O.D. 0.5 mm; thermal conductivity of the PTFE 
wall, 0.27 W K-’ m-r; surface heat transfer coefficient, 130 
W m-’ K-l. c =Concentration; x=axial coordinate of the 
capillary tube; t = time. (a), (b), (c) Distributions of concen- 
tration in the capillary tube. 
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Fig. 4. Simulation of electromigration of the boundary 
between 1 and 4 mM NaCl. Details as in Fig. 2. 

tration of the solution and the electric current 
density (Figs. 4-6), further patterns of the con- 
centration profile moving in the capillary can be 
seen. Fig. 4 reveals a slight irregularity in the 
oscillations, Fig. 5 shows a series of sharp per- 

1 
80 

G 
t = 220 I 

70 

60 

50 

II!i!! 
4% 6 12 (8 2 

f x In 

Fig. 5. Simulation of electromigration of the boundary 
between 1 and 2 mM NaCI. Details as in Fig. 2. 
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Fig. 6. Simulation of electromigration of a small concen- 
tration disturbance in 1 mM NaCI. Details as in Fig. 2. 

iodic dips that may move stably in a capillary 
tube and Fig. 6 demonstrates that if the current 
density is sufficiently high for a given concen- 
tration, even a small disturbance in the concen- 
tration profile is quickly amplified. 

Changes in concentration at jumps of the over- 
all heat transfer coefficient. The overall heat 
transfer coefficient h, may not be constant along 
the capillary, i.e., it may be a function of the 
x-coordinate. Jumps of the heat flux through the 
capillary wall may often occur in practice at 
junctions of tubing. 

Fig. 7 shows a simulation of the concentration 
development at the sites of two jumps of h, 
(from 130 to 3200 W m-* K-’ and vice versa). 
This corresponds to an illustrative situation 
where an air-cooled capillary tube is partly 
immersed in cooling water. The axial profiles of 
h, and h, are shown in Fig. 7d for the PTFE 
capillary of I.D. 0.3 mm and O.D. 0.5 mm. A 
constant initial distribution of concentration in 
the capillary is assumed. The concentration de- 
creases at the site of the left jump, whereas it 
increases at the site of the right jump. Both sites 
therefore generate concentration boundaries that 
move in the capillary as in previous cases and 
that can cause oscillations. This is shown in Fig. 

Fig. 7. Simulation of concentration development at the sites 
of two jumps in the radial heat transfer. Current density, 
-1500 A m-*; temperature of surroundings, 25°C; PTFE 
capillary of I.D. 0.3 mm, O.D. 0.5 mm; thermal conductivity 
of the PTFE wall, 0.27 W K-i m-l. c = Concentration; 
x = axial coordinate of the capillary tube; t = time; h = heat 
transfer coefficient. (a), (b), (c) Distributions of concen- 
tration in the capillary tube; (d) axial profiles of the heat 
transfer coefficients. 1 = Surface heat transfer coefficient; 
2 = overall heat transfer coefficient. 

8, where the jump in radial heat flux may be a 
source of moving sharp oscillations. 

If the electric current exceeds a certain value, 
a decrease in concentration occurs and the tem- 
perature tends to exceed the boiling point of the 
solution. In reality, boiling of the solution at 
such a site leads immediately to the breaking of 
the electric current. It seems that this mechanism 
of breaking of the current will be more probable 
than the axial mechanism of autothermal runa- 
way described by Gobie and Ivory [8]. This is 
supported by the practical observation that an 
occasional “trip” during electrophoretic experi- 
ments frequently occurs at one junction between 
a capillary tube and an electrode vessel where 
the radial heat flux exhibits a large jump. If the 
electric current is in the opposite direction, the 
trip takes place at the junction of the other 
electrode vessel (or on another jump of heat 
resistance). 
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Fig. 8. Generation of oscillations at a jump in the radial heat 
transfer. Current density, -1500 A m-‘; temperat e of 

$ surroundings, 25°C; FTFE capillary of I.D. 0.3 mm, 0. .0.5 
mm; thermal conductivity of the FTFE wall, 0.27 W K-’ 
m-‘. c = Concentration; x = axial coordinate of the capillary 
tube; t = time; h = heat transfer coefficient. (a), (b), (c) 
Distributions of concentration in the capillary tube; (d) time 
record of the specific resistance measured by the detector at a 
position 12.5 mm along the capillary tube; (e) axial profiles of 
the heat transfer coefficients. 1= Surface heat transfer coeffi- 
cient; 2 = overall heat transfer coefficient. 

Linear model 
For a better understanding of the origin of the 

oscillations, eqns. 20 and 21 can be converted 
into a linear form, which is of course only 
approximate but able to reveal substantial terms 
responsible for oscillations. 

Assuming a constant current density j, diffu- 
sion coefficient D and thermal conductivity K, 
eqns. 20 and 21 can be rewritten accordingly: 

(35) 

It can be shown that for every reasonable value 
of c there is a unique T satisfying 

.2 
I 

@I + u*)c 

-h&T- T,)=O (36) 

where u, and u2 are given by eqns. 28 and 29. 
The value of T obtained by solving eqn. 36 is a 
function of c, say T = T(c), and represents the 
value to which the temperature of a system with 
an axially homogenous concentration c stabilizes 
when t tends to infinity. If we took just the 
function T(c) and inserted it in eqn. 34, we 
would reduce the pair of eqns. 34 and 35 to an 
equation for c but the phenomena found when 
studying the full system would not appear. This 
is a consequence of the maximum principle for 
parabolic equations. It proves the importance of 
eqn. 35 in the process. It seems that in the 
behaviour of the full system of eqns. 34 and 35 it 
is very important that, in some way, the tem- 
perature lags behind the concentration. 

As the initial concentration profile we take 
c(x,O) = y( 1000x - S), where 

r(5) = 1 for l<-1 
1 sin(mt) 

=- -+++3 
[ 2 r I 

for -1StSl 

= 2 for 8 > 1 (37) 

If c = 1.5, the “average” value of the initial 
concentration and j = -1373, h, = 200, T, = 25, 
R = 0.15 * 10V3, we find from eqns. 36 and 24-29 
that T = T, + 25. These values will be used when 
arranging terms in eqns. 34 and 35. For N(c, 
T) = uI/(uI + u2), the transference number, this 
means that 

= -v.$+M.$ (38) 

where the values of V and M can be found from 
eqns. 24-29 and are V= 1.910. 10e5 and M = 
4.476.10+. 

Linearizing l/c around c = 3/2, we obtain 
l/c= (4/9)(3 - c) and the system of eqns. 34 
and 35 changes to 

(39) 

aT 
-=(y 

at $+8[$(3-c)-(T-r,)] (40) 
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where D=1.50~10-9, cu=1.4.10P7 and p= 
0.6274. Finally, as the initial conditions are taken 

c(x, 0) = y( 1000x - 8) (41) 

T(x, 0) = T, + 50 - $) c(x, 0) (42) 

Eqn. 42 gives the initial temperature distribution 
to which the temperature governed by eqn. 40 
would stabilize if the concentration in the capil- 
lary were c(x, 0). 

The system of eqns. 39-42 was studied on the 
real line, i.e., for x E (-a~, 00) by applying 
Fourier transformation. The solution of the 
transformed equation can be inverted numerical- 
ly for any value of time and thus the evolution of 
the concentration profile governed by eqns. 39- 
42 can be obtained. 

Fig. 9 presents the results of three different 
computations for comparison. Curve 1 is the 
result of the Fourier transform solution of the 
linear eqns. 39-42, curve 2 is the result of the 
numerical solution of the linear eqns. 39-42 and 
curve 3 is the result of the numerical solution of 
the original non-linear eqns. 20 and 21 using the 
initial conditions 41 and 42 and with i = -1373, 
h, = 200, Ts = 25 and R = 0.15 - 10e3. There is 
perfect agreement between both solutions of the 

$5 i=os 
TV 
1.5 

1.0 

0.5 

0.0 El 
Fig. 9. Comparison of various solutions of differential equa- 
tions. Current density, -1373 A m-‘; temperature of sur- 
roundings, 25°C; overall heat transfer coefficient, 200 W mm2 
K-‘. x = Axial coordinate of the capillary tube; t = time. (a) 
Initial condition eqn. 41; (b) results. l= Result of the 
Fourier transform solution of the linear eqns. 39-42; 2 = 
result of the numerical solution of the linear eqns. 39-42; 
3 = result of the numerical solution of the non-linear eqns. 21 
and 22 using the initial conditions 41 and 42. 

linear problem and very good qualitative agree- 
ment with the non-linear solution. 

On the basis of the results, it can be stated 
that the phenomena found when studying the full 
non-linear system are also found in the linearized 
problem. 

It can be concluded, that, according to Stock- 
mayer [ 111, the concentration boundary moves if 
the transference number depends on concen- 
tration. Additionally, the moving oscillations of 
the concentration profile can appear if the trans- 
ference number is dependent on temperature, 
even if this dependence is linear. 

Similarly, a non-linear nature of the system is 
not essential for the increase and decrease in 
concentration on jumps in the overall heat trans- 
fer coefficient. They can appear whenever a 
transference number is dependent on tempera- 
ture, even if this dependence is linear. 

Experimental verification 
The theoretically predicted phenomena were 

supported experimentally. 
Oscillation phenomena frequently occur in 

practice and are often misinterpreted as artifacts 
of contact conductivity detectors. Fig. 10 shows 
the records of a high-frequency contactless con- 
ductivity detector, revealing examples of such 
oscillations. The oscillations appear several min- 
utes after switching an electric current. The high- 
frequency detector has the advantage of contact- 
less conductivity measurement, hence electrode 
reactions that would disturb measurements are 
prevented. On the other hand, it should be 
emphasized that most construction designs of 
conductivity detectors alter the radial flux of the 
capillary wall, which therefore causes the above- 
mentioned jumps in the radial heat flux and, 
consequently, sites where a decrease or increase 
in concentration may occur. The measuring cell 
of the high-frequency contactless conductivity 
detector used (similar to that described previous- 
ly [22]) is formed by a brass cylinder with 
measuring electrodes. A PTFE capillary tube is 
fed through the axial hole in the cylinder. It 
implies the origination of two jumps in the heat 
flux at both ends of the cylinder. In addition, 
other sites of such jumps are at every junction of 
tubing. Apparently, these jumps are sources of 
the observed oscillations. 
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b 

+t 

Fig. 10. Experimental record of the conductivity detector. 
Electrolyte solution in the whole system (Le., in anodic and 
cathodic vessels and in the capillary tube), 4 mM NaCI. 
PTFE capillary of I.D. 0.4 mm, O.D. 0.6 mm. r,=Speciftc 
resistance; t= time. (a) Current 180 PA, cathode at the 
sample side, anode at the detector side; (b) current 180 PA, 
anode at the sample side, cathode at the detector side. 

The decrease or increase in concentration at 
jumps of the surface heat transfer coefficient can 
be verified in an experiment checking the simula- 
tion described in Fig. 7. Such an experiment can 
be realized on a common isotachophoretic in- 
strument using a PTFE capillary of I.D. 0.3 mm 
and O.D. 0.5 mm. A cathodic and anodic vessel 
and the capillary are filled with a 4 mol mm3 
solution of sodium chloride and the capillary is 
partly immersed in a cooling water-bath. The 
schematic arrangement of this experiment is 
shown in Fig. 11. After about 3 min using a 
constant electric current of 200 PA, the concen- 
tration of the sodium chloride will be decreased 
at the site marked 5 in Fig. 11. At this site, the 
production of heat is higher but, owing to 
intensive water cooling, the temperature at this 
site does not exceed the boiling point of the 
solution. However, after removing the capillary 

Fig. 11. Arrangement of the experimental check of the 
increase and decrease in concentration at jumps in the radial 
heat transfer. 1 = Anodic and cathodic compartments filled 
with electrolyte; 2 = cooling water; 3 = capillary tube; 4,5 = 
sites of concentration changes. 

from the water-bath and maintaining the same 
electric current, a break in the current takes 
place after a few seconds. 

The decrease or increase in concentration at 
jumps of the surface heat transfer coefficient can 
also be visualized if an ionic organic dye, e.g., 
bromophenol blue, is used as an electrolyte in 
the electrophoretic experiment with the same 
arrangement as shown in Fig. 11 but with a 
thicker capillary tube, e.g., of I.D. 0.8 mm, for 
better visibility. Bleaching is observed at the site 
marked 4 in Fig. 11 and, vice versa, there is a 
deepening of the colour at site 5. Bromophenol 
blue is a weak acid with pK, ~3.8. Detailed 
temperature dependences of the mobility and 
diffusion coefficient of its anionic form or the 
temperature dependence of the pK, value are 
not known. Nevertheless, it can be expected that 
the properties of the cationic and anionic con- 
stituents of the dye will differ and the dye will 
have an analogous migration behaviour to a 
solution of NaCI. 

APPENDIX 

Let us check whether the above-mentioned 
neglect of the Soret effect [13] (and the Dufour 
effect) [13]) plays a significant role in the de- 
scribed model of electromigration. Assuming a 
very dilute solution of a strong binary elec- 
trolyte, the thermodynamic force Xi (i = 1, 2) 
raising the mass flux of the ith ion in solution in 
the electric field can be written [12] according to 
the Onsager theory as 
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The thermodynamic force X, raising the heat 
flux is 

X3=-+.$ 

Hence the fluxes J1 and J2 of ions 1 and 2 and 
flux J3 of the heat are 

J1= Lllxl+ Ll2& + &3x, (45) 

Jz = L,,X, + LzzXz + LzJ, (46) 

J3 = LX, + L,,Xz + L,,& (47) 

where L, (i, j = 1, 2, 3) are phenomenological 
Onsager coefficients. The Onsager reciprocity 
theorem declares L, = Lji. In our case with very 
dilute solution, the interaction between ions can 
be neglected to a good approximation, i.e., 
L,, = L,, = 0. The remaining non-diagonal co- 
efficients L13, Lz3, L,, and L,, are responsible 
for the Soret and Dufour effects. 

Eqns. 45 and 46 can be rewritten using eqn. 2 
and the electroneutrality condition declaring c, = 
c2 = c, Using further relationships between phe- 
nomenological and diffusion coefficients [13,16], 
the individual mass fluxes are (for the case of a 
uni-univalent electrolyte) 

+sgn(z,) 
ui . 

._.+ 

u1+ u2 

(48) 

where i = 1, 2 and s is the Soret coefficient. The 
Soret coefficient of an electrolyte solution is 
strongly dependent on temperature. Its value is 
approximately several 10e3 K-’ for our solutions 
of NaCl in the temperature range 20-50°C. 
Knowing the value of the Soret coefficient, it is 
possible to calculate the term SC aTlax in the 
previously calculated results and compare it with 
the &z/ax term. This can be done, e.g., for the 
results shown in Fig. 5. In Fig. 12 there are 
plotted both terms assuming a value of the Soret 
coefficient of 0.005 K-l and it is obvious that the 
amplitude of the &lax term is much greater 
(about ten times) than the amplitude of the 
SC aTlax term. 

Fig. 12. Plot of SC aTlax and &z/ax terms for the situation 
simulated in Fig. 5. x = Axial coordinate of the capillary 
tube; r=time. l=scaTlax term; 2=acJax term; H-value 
of the terms in mol rnm4. 

From this, it can be assumed that neglect of 
the Soret effect did not cause significant errors in 
the previous calculations. Analogously, the same 
would be valid for the flux of the heat and the 
Dufour effect. 
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